Homework 6

Due November 8th on paper at the beginning of class. Justify your answers. Please let me know if you have a question or find a mistake. The book is https://archive.org/details/ complex-variables-2ed-dover-1999-fisher/page/n23/mode/2up.

- Section 2.6 (pages 168 and 169) \#27, 28 (show this by finding a number M involving e and π such that $|C(z)| \leq M$ when z is on γ_{N}, regardless of $\left.N\right), 32,33$.
- Nonbook problem: Use the answer to \# 33 above with a good choice of w to evaluate $\sum_{k=1}^{\infty} \frac{1}{1+\pi^{2} k^{2}}$. Simplify your answer as much as possible.
- You don't have to do this one but you may like to take a look at \# 34. The annoying thing there is navigating branches of log, but note that those issues disappear in the final formula (11), which is a version for $\sin z$ of the polynomial factorization formula $P(z)=$ $a\left(z-p_{1}\right) \cdots\left(z-p_{n}\right)$, where $p_{1}, \ldots p_{n}$ are the roots of the polynomial.

Hints: For 2.6.28, write $|\cot \pi z|=\frac{\left|1+e^{i a} e^{b}\right|}{\left|1-e^{i a} e^{b}\right|}$ for suitable real numbers a and b, and use the way that either a or b simplifies on each side of the square. For 2.6.33, simplify $\frac{1}{k(k-w)}+\frac{1}{(-k)(-k-w)}$ and use the result to rewrite the sum over $k \neq 0$ as a sum over $k \geq 1$.

